Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Environ Health Res ; : 1-16, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576268

RESUMO

Salmonella enterica is known for its disease-causing serotypes, including Montevideo and Pomona. These serotypes have been found in various environments, including river water, sediments, food, and animals. However, the global spread of these serotypes has increased, leading to many reported infections and outbreaks. The goal of this study was the genomic analysis of 48 strains of S. Montevideo and S. Pomona isolated from different sources, including clinical. Results showed that environmental strains carried more antibiotic resistance genes than the clinical strains, such as genes for resistance to aminoglycosides, chloramphenicol, and sulfonamides. Additionally, the type 4 secretion system, was only found in environmental strains. .Also many phosphotransferase transport systems were identified and the presence of genes for the alternative pathway Entner-Doudoroff. The origin of isolation may have a significant impact on the ability of Salmonella isolates to adapt and survive in different environments, leading to genomic flexibility and a selection advantage.

2.
Viruses ; 15(11)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38005903

RESUMO

OBJECTIVE: The aim of this work was to analyze the metadata of the SARS-CoV-2 sequences obtained from samples collected in Mexico from 2020 to 2022. MATERIALS AND METHODS: Metadata of SARS-CoV-2 sequences from samples collected in Mexico up to 31 December 2022 was retrieved from GISAID and manually cured for interpretation. RESULTS: As of December 2022, Mexican health authorities and the scientific community have sequenced up to 81,983 SARS-CoV-2 viral genomes deposited in GISAID, representing 1.1% of confirmed cases. The number of sequences obtained per state corresponded to the gross domestic product (GDP) of each state for the first (Mexico City) and the last (Tlaxcala). Approximately 25% of the sequences were obtained from CoViGen-Mex, an interdisciplinary initiative of health and scientific institutions to collect and sequence samples nationwide. The metadata showed a clear dominance of sequences retrieved by women. A similar variant distribution over time was found in Mexico and overseas, with the Omicron variant predominating. Finally, the age group with the highest representation in the sequences was adults aged 21 to 50 years, accounting for more than 50% of the total. CONCLUSIONS: Mexico presents diverse sociodemographic and economic characteristics. The COVID-19 pandemic has been and continues to be a challenge for collaboration across the country and around the world.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Feminino , Humanos , SARS-CoV-2/genética , México/epidemiologia , Pandemias , COVID-19/epidemiologia , Genômica , China
3.
Parasitol Res ; 122(11): 2641-2650, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37676306

RESUMO

Cyclospora cayetanensis is an enteric coccidian parasite responsible for gastrointestinal disease transmitted through contaminated food and water. It has been documented in several countries, mostly with low-socioeconomic levels, although major outbreaks have hit developed countries. Detection methods based on oocyst morphology, staining, and molecular testing have been developed. However, the current MLST panel offers an opportunity for enhancement, as amplification of all molecular markers remains unfeasible in the majority of samples. This study aims to address this challenge by evaluating two approaches for analyzing the genetic diversity of C. cayetanensis and identifying reliable markers for subtyping: core homologous genes and mitochondrial genome analysis. A pangenome was constructed using 36 complete genomes of C. cayetanensis, and a haplotype network and phylogenetic analysis were conducted using 33 mitochondrial genomes. Through the analysis of the pangenome, 47 potential markers were identified, emphasizing the need for more sequence data to achieve comprehensive characterization. Additionally, the analysis of mitochondrial genomes revealed 19 single-nucleotide variations that can serve as characteristic markers for subtyping this parasite. These findings not only contribute to the selection of molecular markers for C. cayetanensis subtyping, but they also drive the knowledge toward the potential development of a comprehensive genotyping method for this parasite.


Assuntos
Cyclospora , Parasitos , Animais , Cyclospora/genética , Filogenia , Tipagem de Sequências Multilocus , Parasitos/genética , Técnicas de Genotipagem , Biomarcadores
4.
Int J Mol Sci ; 24(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37685913

RESUMO

Listeria monocytogenes is an important pathogen that has been implicated in foodborne illness. The aim of the present study was to investigate the diversity of virulence factors associated with the mechanisms of pathogenicity, persistence, and formation of biofilm L. monocytogenes by tandem analysis of whole-genome sequencing. The lineages that presented L. monocytogenes (LmAV-2, LmAV-3, and LmAV-6) from Hass avocados were lineages I and II. Listeria pathogenicity island 1 (LIPI-1) and LIPI-2 were found in the isolates, while LIPI-3 and Listeria genomic island (LGI-2) only was in IIb. Stress survival island (SSI-1) was identified in lineage I and II. In the in silico analysis, resistance genes belonging to several groups of antibiotics were detected, but the bcrABC and transposon Tn6188 related to resistance to quaternary ammonium salts (QACs) were not detected in L. monocytogenes. Subsequently, the anti-L. monocytogenes planktonic cell effect showed for QACs (MIC = 6.25 ppm/MBC = 100 ppm), lactic acid (MBC = 1 mg/mL), citric acid (MBC = 0.5 mg/mL) and gallic acid (MBC = 2 mg/mL). The anti-biofilm effect with organic acids (22 °C) caused a reduction of 4-5 log10 cfu/cm2 after 10 min against control biofilm L. monocytogenes formed on PP than SS. This study is an important contribution to understanding the genomic diversity and epidemiology of L. monocytogenes to establish a control measure to reduce the impact on the environment and the consumer.


Assuntos
Listeria monocytogenes , Listeria , Listeria monocytogenes/genética , Genômica , Ácido Láctico , Antibacterianos/farmacologia , Compostos Orgânicos
5.
Microorganisms ; 11(8)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37630674

RESUMO

Citrobacter werkmanii is an emerging and opportunistic human pathogen found in developing countries and is a causative agent of wound, urinary tract, and blood infections. The present study conducted comparative genomic analyses of a C. werkmanii strain collection from diverse geographical locations and sources to identify the relevant virulence and antimicrobial resistance genes. Pangenome analyses divided the examined C. werkmanii strains into five distinct clades; the subsequent classification identified genes with functional roles in carbohydrate and general metabolism for the core genome and genes with a role in secretion, adherence, and the mobilome for the shell and cloud genomes. A maximum-likelihood phylogenetic tree with a heatmap, showing the virulence and antimicrobial genes' presence or absence, demonstrated the presence of genes with functional roles in secretion systems, adherence, enterobactin, and siderophore among the strains belonging to the different clades. C. werkmanii strains in clade V, predominantly from clinical sources, harbored genes implicated in type II and type Vb secretion systems as well as multidrug resistance to aminoglycoside, beta-lactamase, fluoroquinolone, phenicol, trimethoprim, macrolides, sulfonamide, and tetracycline. In summary, these comparative genomic analyses have demonstrated highly pathogenic and multidrug-resistant genetic profiles in C. werkmanii strains, indicating a virulence potential for this commensal and opportunistic human pathogen.

6.
Gene ; 851: 146966, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36265748

RESUMO

Salmonella enterica serotype Oranienburg is a multi-host, ubiquitous, and prevalent Non-typhoidal Salmonella (NTS) in subtropical rivers, particularly in sediments; little studied so far possible the adaptation and establishment of this microorganism based on its genetic content. This study was focused on the first five genomes of S. Oranienburg in sediments through whole-genome sequencing (WGS) and 61 river water genomes isolated in previous studies. Results showed an open pangenome with 5,594 gene clusters (GCs), and the division of their categories showed; 3,303 core genes, 741 persistent genes, 1,282 accessory genes, and 268 unique genes. Additionally, it showed three main subclades within the same serotype and showed a conserved genetic content, suggesting the display of different adaptation strategies to its establishment. Nine genes for antimicrobial resistance were detected: aac (6') - Iy, H-NS, golS, marA, mdsABC, mdtK, and sdiA, and a mutation in the parC gene p. T57S generating a resistance. In addition, virulence genes and pathogenicity islands (SPI's) were analyzed, finding 92 genes and an identity above 80 % in the SPI's 1 to 5, and the centisomes 54 and 63. The environmental strains of S. Oranienburg do not represent a concern as multidrug resistance (MDR) bacterium; however, virulence genes remain a potential health risk. This study contributes to understanding its adaptation to aquatic environments in Mexico.


Assuntos
Salmonella enterica , Sorogrupo , Virulência/genética , Salmonella enterica/genética , Salmonella , Antibacterianos
7.
Virus Res ; 323: 198973, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36272541

RESUMO

Vibrio parahaemolyticus causes acute hepatopancreatic necrosis disease (AHPND) in farmed shrimp. Due to its damage potential, which could be as high as a 100% mortality rate, bacteriophages have emerged as a promising natural control intervention other than antibiotics, yet multiple roadblocks need to be overcome. In this study, six bacteriophages isolated from seafood samples, seawater, and estuary water in Sinaloa, Mexico, demonstrated a narrow host range among Mexican AHPND-causing V. parahaemolyticus. All bacteriophages are composed of a double-stranded DNA genome with lengths ranging between 43,268 and 57,805 bp. All six phages exhibited latency periods of 10-30 min and burst sizes of 34-168 viral particles per infected cell. The optimal MOI for bacteriophage propagation was 0.01-1. No transfer RNA (tRNA), virulence, or resistance genes were found in either genome, and the life cycle of these phages was classified as virulent by the PhageAI platform. Phylogenetic and comparative genomics analyzes assigned phages M3, C2, M9, and M83 as new species not yet reported within the genus Maculvirus, Autographiviridae family. ALK and CHI phages were assigned as new members of a new genus not yet classified within the subfamily Queuovirinae. The findings highlight the potential of CHI, ALK, M3, C2, M9, and M83 as promising alternatives against AHPND-causing V. parahaemolyticus from Mexico.

8.
Curr Microbiol ; 79(12): 385, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329340

RESUMO

Mosquito-borne diseases such as malaria and dengue are global severe public health threats. Due to the lack of efficient control methods, alternative approaches to decreasing arboviral transmitted diseases are prioritized to reduce morbidity and mortality in every endemic region. Mosquito midgut bacteria play an essential role in physiological development, fitness, and the arthropods´ vectorial capacity. Bacteriophages are viruses that infect bacteria and are considered a promising biocontrol method by eliminating midgut microbiota that plays an essential role in mosquitoes´ health. Here, we isolate and identify 22 bacteria from mosquito´s midgut belonging to the genera Mesobacillus, Enterobacter, Klebsiella, Microbacterium, Micrococcus, Pantoea, Serratia, and Staphylococcus, mainly. Twelve phages with lytic activity against Enterobacter, Klebsiella, and Pantoea were also isolated. All 12 phages showed a double-stranded DNA genome, ranging from 36,790 to 149,913 bp, and were taxonomically classified as members of the Drexlerviridae family, Molineuxvirinae, Studiervirinae, and Vequintavirinae subfamilies. Open reading frames associated with phage structure, packing, host lysis, DNA metabolism, and additional functions were predicted in all 12 phage genomes, while tRNAs were predicted in five phage genomes. In addition, the life cycle was predicted as virulent for the 12 phages, and no antibiotic resistance, virulence, allergenic, or lysogenic genes were found in either genome. These findings suggest that the 12 phages have biocontrol potentials; however, it is necessary to elucidate specific bacterial host's roles and then the phages' ability to serve as effective vector control.


Assuntos
Aedes , Bacteriófagos , Pantoea , Animais , Bacteriófagos/genética , Aedes/microbiologia , Mosquitos Vetores , Genômica
9.
Microorganisms ; 10(6)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35744732

RESUMO

Salmonella enterica is a leading cause of human gastrointestinal disease worldwide. Given that Salmonella is persistent in aquatic environments, this study examined the prevalence, levels and genotypic diversity of Salmonella isolates recovered from major rivers in an important agricultural region in northwestern Mexico. During a 13-month period, a total of 143 river water samples were collected and subjected to size-exclusion ultrafiltration, followed by enrichment, and selective media for Salmonella isolation and quantitation. The recovered Salmonella isolates were examined by next-generation sequencing for genome characterization. Salmonella prevalence in river water was lower in the winter months (0.65 MPN/100 mL) and significantly higher in the summer months (13.98 MPN/100 mL), and a Poisson regression model indicated a negative effect of pH and salinity and a positive effect of river water temperature (p = 0.00) on Salmonella levels. Molecular subtyping revealed Oranienburg, Anatum and Saintpaul were the most predominant Salmonella serovars. Single nucleotide polymorphism (SNP)-based phylogeny revealed that the detected 27 distinct serovars from river water clustered in two major clades. Multiple nonsynonymous SNPs were detected in stiA, sivH, and ratA, genes required for Salmonella fitness and survival, and these findings identified relevant markers to potentially develop improved methods for characterizing this pathogen.

10.
Virus Res ; 312: 198719, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35219760

RESUMO

Acute hepatopancreatic necrosis disease (AHPND) is a life-threatening disease to recently stocked shrimp. This disease is mainly caused by Vibrio parahaemolyticus and, to date, it has not been effectively controlled. Bacteriophages are a promising method to control bacterial diseases in aquaculture and multiple phages that infect Asian strains of V. parahaemolyticus have been described. However, few studies have characterized the bacteriophages that infect Latin American strains. Here, two lytic Vibrio phages (vB_VpaP_AL-1 and vB_VpaS_AL-2) were isolated from estuary water in Sinaloa, Mexico. The host ranges were tested using ten AHPND-causing strains isolated from Mexico and phage AL-1 was able to infect two strains while AL-2 infected four. One-step growth curve showed that AL-1 produced 85 PFU/cell and AL-2 produced 68 PFU/cell in 30 and 40 min, respectively. Both phages were able to tolerate temperatures ranging from 20 to 50 °C and pH values ranging from 4 to 10. Phages AL-1 and AL-2 have double-stranded DNA genomes of 42,854 bp and 58,457 bp, respectively. In total, 53 putative ORFs associated with the phage structure, packing, host lysis, DNA metabolism, and additional functions were predicted in the AL-1 genome, while 92 ORFs associated with the same functions as the AL-1 and 1 tRNA were predicted in the AL-2 genome. The lifecycle was classified as virulent for both phages. Morphology, phylogeny, and comparative genomic analyses assigned phage AL-1 as a new member of the genus Maculvirus in the Autographiviridae family, and phage AL-2 as a new member of the Siphoviridae family. These findings suggest that vB_VpaP_AL-1 and vB_VpaS_AL-2 are potential biocontrol agents against AHPND-causing V. parahaemolyticus from Mexico.


Assuntos
Bacteriófagos , Vibrio parahaemolyticus , Efrina-A5/genética , Genoma Viral , Genômica , Humanos , Necrose/genética , Vibrio parahaemolyticus/genética
11.
Int J Environ Health Res ; 32(7): 1529-1541, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33706620

RESUMO

The survival of Salmonella in subtropical river water depends on genetic and metabolic reorganization for the expression of alternative metabolic pathways in response to starvation, which allows Salmonella to use environmental carbon sources (C-sources). However, knowledge regarding the metabolic plasticity of Salmonella serotypes for C-source utilization when exposed to these conditions remains unclear. The aim of this study was to evaluate the metabolic response and level of environmental C-source consumption by environmental Salmonella (Oranienburg and Saintpaul) and clinical Salmonella (Typhi) serotypes by comparing laboratory growth against exposure to river water conditions. Metabolic characterization was performed using a Biolog® EcoPlateTM containing 31 C-sources. The results obtained under laboratory growth conditions showed that environmental serotypes used 74.1% of the C-sources, whereas the clinical serotype used 45.1%. In contrast, in river water, all strains used up to 96.7% of the C-sources. Salmonella exposure to river water increases its capacity to use environmental C-sources.


Assuntos
Salmonella enterica , Carbono , Rios , Salmonella/genética , Salmonella enterica/genética , Água
12.
Int J Environ Health Res ; 32(5): 1155-1163, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33251827

RESUMO

Salmonella in the environment have evolved genetically to maintain a stable cell metabolism. Nevertheless, a lack of common nutrients (such as glucose) causes these strains to metabolize alternative carbon sources. In this study, 21 strains of Salmonella Oranienburg isolated from subtropical river water were evaluated to compare their adaptation and preconditioning abilities for the consumption of environmental carbon sources (ECS). The results obtained in this study attributed important biological characteristics to the adaptation of the metabolism of Salmonella strains to diverse ECS; these characteristics include but are not limited to variations in plasticity and natural preconditioning in closely related microorganisms, such as environmental isolates belonging to the serotype Oranienburg.


Assuntos
Rios , Salmonella , Carbono , Salmonella/genética , Sorogrupo , Água
13.
Antibiotics (Basel) ; 10(10)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34680731

RESUMO

Biofilm formation by E. coli is a serious threat to meat processing plants. Chemical disinfectants often fail to eliminate biofilms; thus, bacteriophages are a promising alternative to solve this problem, since they are widely distributed, environmentally friendly, and nontoxic to humans. In this study, the biofilm formation of 10 E. coli strains isolated from the meat industry and E. coli ATCC BAA-1430 and ATCC 11303 were evaluated. Three strains, isolated from the meat contact surfaces, showed adhesion ability and produced extracellular polymeric substances. Biofilms of these three strains were developed onto stainless steel (SS) surfaces and enumerated at 2, 12, 24, 48, and 120 h, and were visualized by scanning electron microscopy. Subsequently, three bacteriophages showing podovirus morphology were isolated from ground beef and poultry liver samples, which showed lytic activity against the abovementioned biofilm-forming strains. SS surfaces with biofilms of 2, 14, and 48 h maturity were treated with mixed and individual bacteriophages at 8 and 9 log10 PFU/mL for 1 h. The results showed reductions greater than 6 log10 CFU/cm2 as a result of exposing SS surfaces with biofilms of 24 h maturity to 9 log10 PFU/mL of bacteriophages; however, the E. coli and bacteriophage strains, phage concentration, and biofilm development stage had significant effects on biofilm reduction (p < 0.05). In conclusion, the isolated bacteriophages showed effectiveness at reducing biofilms of isolated E. coli; however, it is necessary to increase the libraries of phages with lytic activity against the strains isolated from production environments.

14.
Curr Microbiol ; 77(12): 3851-3860, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32959087

RESUMO

Acute hepatopancreatic necrosis disease (AHPND) is a severe disease affecting recently stocked cultured shrimps. The disease is mainly caused by V. parahaemolyticus that harbors the pVA1 plasmid; this plasmid contains the pirA and pirB genes, which encode a delta-endotoxin. AHPND originated in China in 2009 and has since spread to several other Asian countries and recently to Latin America (2013). Many Asian strains have been sequenced, and their sequences are publicly accessible in scientific databases, but only four strains from Latin America have been reported. In this study, we analyzed nine pVA1-harboring V. parahaemolyticus sequences from strains isolated in Mexico along with the 38 previously available pVA1-harboring V. parahaemolyticus sequences and the reference strain RIMD 2210633. The studied sequences were clustered into three phylogenetic clades (Latin American, Malaysian, and Cosmopolitan) through pangenomic and phylogenomic analysis. The nucleotide sequence alignment of the pVA1 plasmids harbored by the Asian and Latin American strains confirmed that the main structural difference in the plasmid between the Asian and Latin American strains is the absence of the Tn3 transposon in the Asian strains; in addition, some deletions in the pirAB region were found in two of the Latin American strains. Our study represents the most robust and inclusive phylogenomic analysis of pVA1-harboring V. parahaemolyticus conducted to date and provides insight into the epidemiology of AHPND. In addition, this study highlights that disease diagnosis through the detection of the pirA and pirB genes is an inadequate approach due to the instability of these genes.


Assuntos
Penaeidae , Vibrio parahaemolyticus , Animais , China , América Latina , México , Necrose , Filogenia , Vibrio parahaemolyticus/genética
15.
Environ Monit Assess ; 190(4): 221, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29546664

RESUMO

Survival of bacterial pathogens in different environments is due, in part, to their ability to form biofilms. Four wild-type Salmonella enterica strains, two Oranienburg and two Saintpaul isolated from river water and animal feces, were tested for biofilm formation at the air-liquid interface under stressful conditions (pH and salinity treatments such as pH 3, NaCl 4.5 w/v; pH 7, NaCl 4.5 w/v; pH 10, NaCl 4.5 w/v; pH 3, Nacl 0.5 w/v; pH 7, NaCl 0.5 w/v; and pH 10, NaCl 0.5 w/v); Salmonella Typhimurium DT104 was used as a control strain. Salmonella Oranienburg and Saintpaul from feces were moderately hydrophobic and motile, while S. Saintpaul from water and the control strain S. Typhimurium showed high hydrophobicity, which helped them form more resistant biofilms than S. Oranienburg. Under stressful conditions, all strains experienced difficulties in forming biofilms. Salmonella Saintpaul and Typhimurium expressed the red dry and rough (RDAR) morphotype and were able to form biofilm at air-liquid interface, contrarily to Oranienburg that showed incomplete rough morphology. This study contributes to the knowledge of biofilm formation as a survival strategy for Salmonella in aquatic environments.


Assuntos
Biofilmes/crescimento & desenvolvimento , Monitoramento Ambiental , Salmonella enterica/crescimento & desenvolvimento , Microbiologia da Água , Animais
16.
Int J Environ Health Res ; 28(1): 43-54, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29249164

RESUMO

This study was performed to evaluate in vitro the adherence and invasiveness capacity of Salmonella Oranienburg and Saintpaul (isolated from river water) exposed to laboratory and river water growth conditions and inoculated into epithelial HEp-2 cell. Results showed that Salmonella Oranienburg and Salmonella Saintpaul showed lower ability to adhere and invade epithelial HEp-2 cells under both growth conditions as compared to Salmonella Typhimurium reference strain. S. Oranienburg adhesion capacity was not affected by the growth conditions, while S. Saintpaul exposed to river water significantly (p < 0.05) decreased its adhesion capacity by 75.7 %. On the contrary, S. Oranienburg exposed to river water reduced its invasion efficiency by 80 %, whereas S. Saintpaul showed no differences between growth conditions. In conclusion, this study suggests that the exposure to non-host conditions, such as river water, adversely affects the adhesion and invasiveness of Salmonella serotypes differently, impacting on their ability to re-enter a new host.


Assuntos
Rios/microbiologia , Salmonella/patogenicidade , Aderência Bacteriana , Morte Celular , Linhagem Celular , Genes Bacterianos , Humanos , Salmonella/genética , Salmonella/isolamento & purificação , Salmonella/fisiologia , Virulência
17.
Front Microbiol ; 8: 1355, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28785246

RESUMO

Foodborne diseases are a serious and growing problem, and the incidence and prevalence of antimicrobial resistance among foodborne pathogens is reported to have increased. The emergence of antibiotic-resistant bacterial strains demands novel strategies to counteract this epidemic. In this regard, lytic bacteriophages have reemerged as an alternative for the control of pathogenic bacteria. However, the effective use of phages relies on appropriate biological and genomic characterization. In this study, we present the isolation and characterization of a novel bacteriophage named phiLLS, which has shown strong lytic activity against generic and multidrug-resistant Escherichia coli strains. Transmission electron microscopy of phiLLS morphology revealed that it belongs to the Siphoviridae family. Furthermore, this phage exhibited a relatively large burst size of 176 plaque-forming units per infected cell. Phage phiLLS significantly reduced the growth of E. coli under laboratory conditions. Analyses of restriction profiles showed the presence of submolar fragments, confirming that phiLLS is a pac-type phage. Phylogenetic analysis based on the amino acid sequence of large terminase subunits confirmed that this phage uses a headful packaging strategy to package their genome. Genomic sequencing and bioinformatic analysis showed that phiLLS is a novel bacteriophage that is most closely related to T5-like phages. In silico analysis indicated that the phiLLS genome consists of 107,263 bp (39.0 % GC content) encoding 160 putative ORFs, 16 tRNAs, several potential promoters and transcriptional terminators. Genome analysis suggests that the phage phiLLS is strictly lytic without carrying genes associated with virulence factors and/or potential immunoreactive allergen proteins. The bacteriophage isolated in this study has shown promising results in the biocontrol of bacterial growth under in vitro conditions, suggesting that it may prove useful as an alternative agent for the control of foodborne pathogens. However, further oral toxicity testing is needed to ensure the safety of phage use.

18.
Int J Environ Health Res ; 27(4): 252-263, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28565917

RESUMO

Long-term exposure to river water by non-indigenous micro-organisms such as Salmonella may affect metabolic adaptation to carbon sources. This study was conducted to determine differences in carbon source utilization of Salmonella Oranienburg and Salmonella Saintpaul (isolated from tropical river water) as well as the control strain Salmonella Typhimurium exposed to laboratory, river water, and host cells (Hep-2 cell line) growth conditions. Results showed that Salmonella Oranienburg and Salmonella Saintpaul showed better ability for carbon source utilization under the three growth conditions evaluated; however, S. Oranienburg showed the fastest and highest utilization on different carbon sources, including D-Glucosaminic acid, N-acetyl-D-Glucosamine, Glucose-1-phosphate, and D-Galactonic acid, while Salmonella Saintpaul and S. Typhimurium showed a limited utilization of carbon sources. In conclusion, this study suggests that environmental Salmonella strains show better survival and preconditioning abilities to external environments than the control strain based on their plasticity on diverse carbon sources use.


Assuntos
Carbono/metabolismo , Rios/microbiologia , Salmonella enterica/metabolismo , Salmonella enterica/genética , Sorogrupo
19.
Stand Genomic Sci ; 11: 89, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27999624

RESUMO

The emergence of antibiotic-resistant foodborne bacteria is a global health problem that requires immediate attention. Bacteriophages are a promising biotechnological alternative approach against bacterial pathogens. However, a detailed analysis of phage genomes is essential to assess the safety of the phages prior to their use as biocontrol agents. Therefore, here we report the complete genome sequence of bacteriophage phiE142, which is able to lyse Salmonella and multidrug-resistant Escherichia coli O157:H7 strains. Bacteriophage phiE142 belongs to the Myoviridae family due to the presence of long non-flexible tail and icosahedral head. The genome is composed of 121,442 bp and contains 194 ORFs, and 2 tRNAs. Furthermore, the phiE142 genome does not contain any genes coding for food-borne allergens, antibiotics resistance, virulence factors, or associated with lysogenic conversion. The bacteriophage phiE142 is characterized by broad host range and compelling genetic attributes making them potential candidates as a biocontrol agent.

20.
PeerJ ; 4: e2423, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27672499

RESUMO

BACKGROUND: Shiga toxin-producing Escherichia coli (STEC) is one of the most common and widely distributed foodborne pathogens that has been frequently implicated in gastrointestinal and urinary tract infections. Moreover, high rates of multiple antibiotic-resistant E. coli strains have been reported worldwide. Due to the emergence of antibiotic-resistant strains, bacteriophages are considered an attractive alternative to biocontrol pathogenic bacteria. Characterization is a preliminary step towards designing a phage for biocontrol. METHODS: In this study, we describe the characterization of a bacteriophage designated phiC119, which can infect and lyse several multidrug-resistant STEC strains and some Salmonella strains. The phage genome was screened to detect the stx-genes using PCR, morphological analysis, host range was determined, and genome sequencing were carried out, as well as an analysis of the cohesive ends and identification of the type of genetic material through enzymatic digestion of the genome. RESULTS: Analysis of the bacteriophage particles by transmission electron microscopy showed that it had an icosahedral head and a long tail, characteristic of the family Siphoviridae. The phage exhibits broad host range against multidrug-resistant and highly virulent E. coli isolates. One-step growth experiments revealed that the phiC119 phage presented a large burst size (210 PFU/cell) and a latent period of 20 min. Based on genomic analysis, the phage contains a linear double-stranded DNA genome with a size of 47,319 bp. The phage encodes 75 putative proteins, but lysogeny and virulence genes were not found in the phiC119 genome. CONCLUSION: These results suggest that phage phiC119 may be a good biological control agent. However, further studies are required to ensure its control of STEC and to confirm the safety of phage use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...